

A Novel Reaction of [60]Fullerene. A Formal [2+2] Cycloaddition with Aryloxy- and Alkoxyketenes

Satoshi Matsui, Kazushi Kinbara, and Kazuhiko Saigo*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received 12 October 1998; revised 12 November 1998; accepted 17 November 1998

Abstract: [60]Fullerene reacted with aryloxy- and alkoxyketenes, generated in situ from the corresponding acid chlorides and triethylamine, to give the 1:2 adducts in good yields. The reaction proceeded via a formal [2+2] cycloaddition, followed by enolization and acylation. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: cycloaddition; ketene; enolization; acylation

Many reactions for the functionalization of [60]fullerene have been developed on the basis of the electron-deficient characteristic of [60]fullerene.¹ Among the reactions, the Diels-Alder reaction,² 1,3-dipolar cycloaddition,³ and [2+2] cycloaddition⁴ are widely used for the functionalization, because the cycloadditions give the characterizable mono- and/or bisadducts in acceptable yields. Thus, [60]fullerene usually tends to exhibit electrophilicity, and nucleophilic reactions of [60]fullerene do not proceed readily, although a few exceptions have been reported.⁵ On the other hand, ketenes, which are important components for the synthesis of cyclobutanones, β -lactams, etc., by [2+2] cycloadditions, show higher reactivity in the reaction with substrates having a more electron-rich double bond, indicating that they have an electrophilic character.⁶ Consequently, the [2+2] cycloaddition of [60]fullerene with a ketene is expected to be difficult, although the reactions of [60]fullerene with the highly reactive o-quinodiketene and o-quinoketenemethane have been reported by [2+4] cycloaddition and [2+1] cycloaddition, respectively.⁷

In the course of our studies on the selective functionalizations of [60]fullerene, we carried out the reaction of [60]fullerene with ketenes, generated *in situ*, and found that the reactions with some ketenes gave the corresponding adducts. Herein we report a novel type of [2+2] cycloaddition of [60]fullerene.

We first attempted the reaction of [60]fullerene (1) with ketenes 2a and 2b, which were generated *in situ* from 2-phenylbutanoyl chloride and (4-methoxyphenyl)acetyl chloride, respectively, and triethylamine; however, no reaction was observed. In contrast, some reaction occurred in the case of phenoxyketene (2c).8 When triethylamine (0.19 ml, 1.39 mmol, 10 eq.) was added to a solution of phenoxyacetyl chloride (0.19 ml, 1.39 mmol, 10 eq.) in chlorobenzene (30 ml) in the presence of 1 (100 mg, 0.139 mmol), followed by stirring of the reaction mixture for 50 min at ambient temperature, the spot of 1 completely disappeared and two new spots appeared on TLC. The immediate separation of the products by silica-gel column chromatography9 (eluent: from toluene/hexane=1/3 to toluene) gave 84 mg of the main product (the less-polar component). 10

The FAB-MS spectrum of the isolated product showed peaks at m/z 988, 989, and 990, 11 which would be assigned to $(M)^+$, $(M+1)^+$, and $(M+2)^+$, respectively, for an adduct of 1 with 2c in a molar ratio of 1:2. Consequently, the yield of the 1:2 adduct was calculated to be 61%.

The 1:2 adduct was characterized in detail by ¹H NMR, ¹³C NMR, DEPT, and IR spectra. ^{12,13} Only one signal corresponding to a carbonyl carbon was detected at 165.18 ppm in the ¹³C NMR spectrum, and a sharp absorption band was observed at 1800 cm⁻¹ in the IR spectrum. These observations strongly suggest that the 1:2 adduct has only one carbonyl group. The existence of an alkenyl group is deduced from peaks at 152.95 and 152.83 ppm in the ¹³C NMR spectrum and from an absorption at 1723 cm⁻¹ in the IR spectrum. These data indicate that the 1:2 adduct contains an enol ester moiety. On the other hand, the sp² carbons, originated from 1, appear as 25 peaks at 146.75-139.27 and 126.35 ppm, and signals at 76.24 and 76.21 ppm in the DEPT spectrum reveal the existence of two quaternary sp³ carbons incorporated in the moiety of 1, indicating that the product has C_S symmetry. On the basis of these observations and the interpretation thereof, the structure of the 1:2 adduct is assigned as 3c.

We next carried out the reactions of 1 with other ketenes 2d-i, generated in situ. The results are summarized in Table 1. The corresponding 1:2 adducts 14 were obtained in moderate yields when aryloxy- and alkoxyketenes 2d-g were used. In contrast, no reaction proceeded when chloroketene (2h) and phthalimidoylketene (2i) were employed, even though they similarly have an electronegative element at the α -position.

$$C_{60} + \begin{bmatrix} R^1 \\ R^2 \end{bmatrix} \longrightarrow C_6H_5CI$$

$$R^1 \longrightarrow C_8H_5CI$$

$$R^2 = H_5CI$$

Table 1. [2+2] Cycloaddition of [60] fullerene with acid chlorides and triethylamine.

Entry	2	R ¹	R ²	Reaction time	Yield [%]
1	2a	C ₆ H ₅	C ₂ H ₅	24 h	no reaction
2	2b	p-CH ₃ OC ₆ H ₄	Н	12 h	no reaction
3	2c	C ₆ H ₅ O	Н	50 min	61
4	2d	p-ClC ₆ H ₄ O	H	11 h	39
5	2e	C ₆ H ₅ CH ₂ O	H	7.5 h	58
6	2f	C ₂ H ₅ O	Н	7.5 h	58
7	2g	CH ₃ O	Н	9 h	37
8	2h	Cl	Н	24 h	no reaction
9	2i	Phthalimido	Н	24 h	no reaction

The reaction mechanism of this cycloaddition, especially insofar as to reasonably explain the difference in reactivity between 2c-g and 2h-i, is not clear at present. However, it is considered that for the formation of 3 the alkoxy substituent at the α -position of the ketenes has some effect on the stabilization of the intermediate or transition-state.

Scheme 1 shows a plausible reaction route from the starting materials to the 1:2 adduct: The 1:1 adduct 4 is formed by the [2+2] cycloaddition of 1 with 2. When the R² of 4 is a hydrogen, the cycloadduct 4 would be able to transform into the enol 5, which is easily acylated with 2 or its precursor (acid chloride) to give the 1:2 adduct 3.¹⁵ The enolization and the following acylation steps are strongly supported by the fact that enol ester 6 was obtained in 34 % yield in addition to the corresponding 1:2 adduct 3f (29% yield) when 1 was allowed to react with 7 equivalents of 2f in the presence of 30 equivalents of benzoyl chloride in chlorobenzene for 4 h.

Scheme 1
$$C_{60} + \begin{bmatrix} R^1 \\ R^2 \end{bmatrix} \longrightarrow \begin{bmatrix} R^2 = H \\ C_6H_5CI \end{bmatrix}$$

$$1 \qquad 2 \qquad 3 \qquad EtO \longrightarrow Ph$$

$$R^2 = H \qquad 6$$

More detailed experimental and theoretical studies are in progress in order to clarify the mechanism.

Acknowledgment. This work was supported by the Japan Society for the Promotion of Science.

References and Notes

- a) Wudl, F. Acc. Chem. Res. 1992, 25, 157.
 b) Hirsch, A.; Grösser, T.; Skiebe, A.; Soi, A. Chem. Ber. 1993, 126, 1061.
 c) Hirsch, A. Synthesis 1995, 895.
 d) Sliwa, W. Fullerene Sci. Technol. 1995, 3, 243.
- (2) a) Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F.; Leonetti, J.; Little, R. D.; White, T.; Rickborn, B.; Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1993, 115, 1594. b) Diederich, F.; Jonas, U.; Gramlich, V.; Herrmann, A.; Ringsdorf, H.; Thilgen, C. Helv. Chem. Acta 1993, 76, 2445. c) Zhang, X.; Foote, C. S. J. Org. Chem. 1994, 59, 5235. d) Linseen, T. G.; Dürr, K.; Hanack, M.; Hirsch, A. J. Chem. Soc., Chem. Commun. 1995, 103.
- a) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, Ö. Science 1991, 254, 1186. b) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F. J. Am. Chem. Soc. 1992, 114, 7301. c) Wudl, F. Acc. Chem. Res. 1992, 25, 157. d) Isaacs, L.; Wehrsig, A.; Diederich, F. Helv. Chem. Acta 1993, 76, 1231. e) Diederich, F.; Isaacs, L.; Philp, D. J. Chem. Soc., Perkin. Trans. 2 1994, 391. f) Skiebe, A.; Hirsh, A. J. Chem. Soc., Chem. Commun. 1994, 335.
- (4) a) Prato, M.; Maggini, M.; Scorrano, G.; Lucchini, V. J. Org. Chem. 1993, 58, 3613. b) Zhang, X.; Romero, A.; Foote, C. S. J. Am. Chem. Soc. 1993, 115, 11024. c) Wilson, S. R.; Kaprinidis, N.; Wu, Y.; Schuster, D. I. ibid. 1993, 115, 8495. d) Wilson,

- S. R.; Wu, Y.; Kaprinidis, N.; Schuster, D. I. J. Org. Chem. 1993, 58, 6548. e) Yamago, S.; Takeichi, A.; Nakamura, E. J. Am. Chem. Soc. 1994, 116, 1123. f) Metha, G.; Viswanath, M. B. Tetrahedron Lett. 1995, 31, 5631. g) Zhang, X.; Foote, C. S. J. Am. Chem. Soc. 1995, 117, 4271. h) Liou, K.-F.; Cheng, C.-H. J. Chem. Soc., Chem. Commun. 1995, 2473. i) Schuster, D. I.; Cao, J.; Kaprinidis, N.; Wu, Y.; Jensen, A. W.; Lu, Q.; Wang, H.; Wilson, S. R. J. Am. Chem. Soc. 1996, 118, 5639. j) Zhang, X.; Fan, A.; Foote, C. S. J. Org. Chem. 1996, 61, 5456.
- (5) a) Olah, G. A.; Bucsi, I.; Lambert, C.; Aniszfeld, R.; Trivedi, N. J.; Sensharma, D. K.; Prakash, G. K. S. J. Am. Chem. Soc. 1991, 113, 9387. b) Hoke II, S. H.; Molstad, J.; Dilattato, D.; Jay, M. J.; Carlson, D.; Kahr, B.; Cooks, R. G. J. Org. Chem. 1992, 57, 5069. c) Muthu, S.; Maruthamuthu, P. Fullerene Sci. Technol. 1996, 4, 1061.
- (6) Tidwell, T. T. Ketenes, Wiley, New York 1995.
- (7) Tomioka, H.; Yamamoto, K. J. Chem. Soc., Chem. Commun. 1995, 1961.
- (8) The ketenes would be generated in situ from acid chloride 2c-2g and triethylamine. Although the presumed ketenes have never been directly detected under the dehydrochlorination conditions used, their presence has been inferred from the products. For example, see: Arrieta, A.; Lecea, B.; Cossío, F. P. J. Org. Chem. 1998, 63, 5869.
- (9) Merck Kieselgel 60 was used for the column chromatography.
- (10) The more-polar component (ca. 17 mg) was partially decomposed during the silica-gel column chromatography. The ¹H NMR and FAB-MS spectra of the more-polar component indicated that it was a mixture of multi-adducts.
- (11) The FAB mass spectrum was recorded on a JEOL JMS AX-505H. The 1:2 adduct: m/e 990 ((M+2)⁺), 989 ((M+1)⁺), 988 (M⁺), 722 (([60]fullerene+2)⁺), 721 (([60]fullerene+1)⁺), 720 (([60]fullerene)⁺).
- 12) The ¹H NMR (CDCl₃), ¹³C NMR and DEPT (CD₂Cl₂/CS₂ (1/1) with Cr(acac)₃) spectra were recorded on a Varian Mercury 300, and the infrared spectrum was recorded on a Jasco IR 810. The 1:2 adduct: ¹H NMR (300 MHz, CDCl₃) δ=7.65-6.90 (m, 10H, arom), 4.86 (s, 2H, CH₂); ¹³C NMR (75 MHz, CD₂Cl₂/CS₂ (1/1) with Cr(acac)₃) δ=165.18 (1C, CO), 157.52 (C₆H₅O), 154.99 (C₆H₅O), 152.95 (alkene), 152.83 (alkene), 146.75 (6C), 146.43 (2C), 146.20 (2C), 146.16 (2C), 146.03 (4C), 145.48 (2C), 147.45 (2C), 145.37 (2C), 145.33 (2C), 145.09 (2C), 144.54 (2C), 144.46 (2C), 142.98 (4C), 142.89 (2C), 142.58 (4C), 142.36 (2C), 142.31 (2C), 142.11 (2C), 141.94 (2C), 140.94 (C), 140.27 (2C), 140.17 (2C), 139.62 (2C), 139.27 (2C), 130.07 (C₆H₅O), 129.84 (C₆H₅O), 126.35 (C), 125.70 (C₆H₅O), 122.34 (C₆H₅O), 119.74 (C₆H₅O), 114.78 (C₆H₅O), 76.24 (sp³fullerene), 76.21 (sp³fullerene), 64.76 (CH₂); DEPT spectrum δ=130.07 (CH), 129.84 (CH), 125.70 (CH), 122.34 (CH), 119.74 (CH), 114.78 (CH), 64.76 (CH₂); IR (KBr) cm⁻¹ 1800, 1723, 1595, 1495, 1190, 1125, 755, 530.
- (13) In a ¹³C NMR measurement, the relaxation time of the quaternary sp³ carbons in [60] fullerene backbones is known to be long. Subsequently, we used a relaxation agent, Cr(acac)₃, for the measurement of the ¹³C NMR spectra of 3.
- (14) All of the products were characterized by ¹H NMR, ¹³C NMR, DEPT, and IR spectra, and FAB-MS; their fundamental skeletons were the same as that of 3c.
- (15) There has been a report on the [2+2] cycloaddition of alkoxyketenes with electron-rich olefins, accompanied by enolization-acylation. See: Bellus, D. J. Org. Chem., 1979, 44, 1208.